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Abstract
Selecting knowledge from associated ground-
ing documents to be used in an information-
seeking conversation is an important task for
agents designed to respond to complex user
queries. In this paper, we introduce a model
that leverages the structure and relations of the
grounding document and dialogue context to
locate knowledge relevant to the conversation.
A posterior regularization mechanism further
boosts the model performance. We provide a
system description and experimental analysis
for the model that achieves the best scores on
the first DialDoc shared task.1

1 Introduction

Our team focuses on designing a model for the
task of selecting knowledge spans from a given
grounding document for the next agent turn in a
conversation. The challenge is to find information
from a relatively long grounding document that
is relevant to the history of user queries and not
redundant with information already provided. In
order to locate the most relevant information in the
long document to the last user query, intuitively,
the model needs to understand and reason over
the relations between previous dialogue turns, the
next agent turn and the document. For example,
the next agent turn should directly address the last
user query and could also be relevant to previous
user queries (e.g., follow-up questions) and agent-
provided information. Therefore, previously used
knowledge in the document could provide impor-
tant clues for locating knowledge for the next turn
based on the dialogue flow.

To address these issues, we organize each docu-
ment into smaller passages and adopt a hierarchi-
cal multi-passage knowledge reader as our basic
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model. In training, we introduce auxiliary loss
functions designed to promote learning of relations
between document passages and the dialogue his-
tory, including a history knowledge prediction task
and dialogue act prediction.

Finally, we adopt an f-divergence based regu-
larization method (Cheng et al., 2021) to improve
model generalization. Details are presented below.

2 System Description

2.1 Multi-Passage Knowledge Reader
In order to model the document structure, for each
dialogue, we divide its grounding documentD into
np passages (s1, s2, . . . , snp) based on section ti-
tles given in the doc2dial dataset (Feng et al., 2020)
of the shared task. Each passage sk consists of a
sequence of lk string spans (sk1, s

k
2, . . . , s

k
lk

) as seg-
mented in the original data, the first span being the
parent section title if the passage is a subsection.
Inspired by the recent open-domain question an-
swering multi-passage reader model (Karpukhin
et al., 2020), we apply a transformer-based encoder
(Vaswani et al., 2017) to individually encode each
passage sk concatenated with the dialogue con-
text c and the document title. Then we perform
knowledge selection hierarchically.

We prepend each span skj with the special token
‘[CLS]’ and denote sk = [sk1, . . . , s

k
lk
] as the se-

quence of span vectors in the kth passage, where skj
is the output vector of the prepended ‘[CLS]’ token
of skj , the jth span in the kth passage. The dialogue
context of each example consists of a sequence of
the nu previous utterances c = (u1, u2, . . . , unu),
where nu is determined by the maximum number
of dialogue history tokens. We encode previous
utterances in a reversed order, therefore u1 denotes
the most recent (user) utterance, while unu denotes
the first one in the dialogue. Since we encode c
with each passage sk separately, we denote each
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Figure 1: The overview of our model. Dashed arrows indicate inputs for calculating the objective of each task.

encoded ui with sk as uki . During training, we
optimize both the knowledge passage selection,2

and the start and end knowledge span selection
within the gold knowledge passage sp of the next
agent turn. Eq. (1-3) show loss functions of knowl-
edge passage (Lp), start (Lb) and end (Le) span
predictions. Wp,Wb,We ∈ Rd are learnable pa-
rameters. z = [z1, . . . , znp ] where zk is the pooled
output vector from encoding dialogue context c and
the kth passage sk, and q(.)i denotes the i-th index
of the vector resulting from the softmax function.
The variables p, b and e correspond to the gold
passage, start and end span indices, respectively.

Lp = − log q(Wp z)p (1)

Lb = − log q(Wb s
p)b (2)

Le = − log q(We s
p)e (3)

Therefore, the combined next turn knowledge se-
lection loss function becomes:

Lnext = Lp + Lb + Le (4)

During inference, we first select the most probable
passage predicted by the model, and then select
the start and end span in the chosen passage. Pro-
cessing each passage rather than the full document
shortens the knowledge context, while preserving
enough reasoning context in most cases as coherent
content are normally put in the same section.

2.2 History Knowledge Prediction
In addition to the next turn knowledge prediction,
we include an auxiliary loss associated with pre-

2We observe that knowledge spans for each turn rarely
exceeds the boundary of a single passage.

dicting previously used knowledge, with the intu-
ition that it would guide the search for the next
knowledge to use. Such explicit signals during
training would help improve the learning of both
previous turn and knowledge span representations,
which are crucial for modeling dialogue-document
relations. Note that such previously used knowl-
edge will not be used during inference.

We prepend special tokens ‘[USR]’ and ‘[AGT]’
before each user and agent turn respectively, and
take the Transformer output vector of each of them
as the corresponding previous turn embedding uki .

Similar to Section 2.1, we calculate both
passage-level and span-level prediction losses for
each history turn. We calculate the passage predic-
tion loss of previous turns as follows,

ûki = ReLU(Wh uki ) (5)

Lhist
p =

1

nu

nu∑
i=1

− log q(Wh
p ûi)pi (6)

where Wh ∈ Rd×d,Wh
p ∈ Rd are model parame-

ters. pi is the gold passage for turn ui.
Then we calculate the losses of predicting the

start and end knowledge span indices (bi and ei)
used by each ui in its ground truth passage pi.
Wh

b ,W
h
e ∈ Rd×d are model parameters.

Lhist
b =

1

nu

nu∑
i=1

− log q(upii
>
Wh

b s
pi
j )bi (7)

Lhist
e =

1

nu

nu∑
i=1

− log q(upii
>
Wh

e s
pi
j )ei (8)



Therefore, the combined knowledge selection
loss function of previous turns becomes:

Lhist = Lhist
p + Lhist

b + Lhist
e . (9)

2.3 Dialogue Act Prediction
There are 7 possible dialogue acts in the dataset.
Modeling dialogue acts could potentially help the
model better understand the dialogue flow and the
most suitable information type to use next.

We model dialogue acts with the additional pre-
diction objectives for both the next and previous
turns. As we encode the dialogue context with
multiple passages, for simplicity, we only calculate
dialogue act prediction loss (Lda) for the encoded
dialogue context with the gold passage sp of next
turn. Wh

t ,Wt ∈ R7×d are parameters for pre-
vious and next turns respectively. t is the gold
dialogue act of the next turn and ti is that of ui.

Lda =
1

nu

[ nu∑
i=1

− log q(Wh
t u

p
i )ti

]
− log q(Wt z

p)t

(10)

2.4 Posterior Regularization
Finally, we incorporate a posterior regularization
mechanism (Cheng et al., 2021) in order to enhance
the model’s robustness in domain shift scenarios.
Specifically, we add an additional adversarial train-
ing loss:

Ladv = max
‖ε‖≤a

[g(fp(x), fp(x+ ε))

+ g(fb(x), fb(x+ ε))

+ g(fe(x), fe(x+ ε))]

(11)

where g is some type of f-divergence.3 x is the
output of the model embedding layer, and fp(x),
fb(x) and fe(x) output the next turn passage, start
and end knowledge span logits respectively by run-
ning our model on x. The above loss function
essentially regularizes the g-based worst-case pos-
terior difference between the clean and noisy input
(with norm of the added noise no larger than some
scalar a) using an inner loop to search for the most
adversarial direction.

2.5 Joint Objective
Combining all the above components, our final
model optimize the joint objective L:

L = Lnext + αLhist + βLda + λLadv (12)
3We use Jensen-Shannon divergence in all of our experi-

ments.

where α, β and λ are tunable hyperparameters.

3 Experiment

3.1 Data and Evaluation

We evaluate our model on the doc2dial dataset
(Feng et al., 2020) used in the DialDoc shared
task. Doc2dial is a recent dialogue dataset for goal-
oriented tasks that are grounded in documents from
multiple social welfare domains. We focus on the
knowledge selection subtask, and use exact match
(EM) and F1 scores for evaluation.

3.2 Setup

We initialize and finetune on pre-trained models,
e.g., BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), ELECTRA (Clark et al., 2020), from
Huggingface Transformers (Wolf et al., 2020).4

We use 3e−5 and 1e−5 as our learning rates and
1000 and 2000 as warm-up steps for base and
large models, with linear decay. We search the
weights in Eq. (12) on the dev set in the ranges of
α = {0.5, 1}, β = {0.5, 1} and λ = {0.5, 2.5, 5}.
All models are trained for 20 epochs and the best
models are selected based on the EM score on the
dev set. The maximum length of each input and di-
alogue context are 512 and 128, respectively. Each
training process is run on 2 and 4 NVIDIA Quadro
Q6000 GPUs for base and large models.

The average and maximum numbers of passages
per grounding document are 8.5 and 26. During
inference, we randomly select up to 20 passages
to process. For training, due to GPU memory and
compute limitations in certain configurations (e.g.,
large models, posterior regularization), we use var-
ious numbers of passages reported in Table 1.

3.3 Compared Systems

Original baseline: BERTQA (Devlin et al.,
2019) with sliding windows to process the full
document. This model predicts the start and end
tokens in the document, instead of spans.

Variations of our model: 1) multi-passage
knowledge reader for next turn knowledge predic-
tion; 2) adding modeling of dialogue context and
documents i.e. history knowledge and dialogue act
prediction; 3) in addition to the task losses above,
adding posterior regularization.

4https://github.com/huggingface/
transformers
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Method Backbone
model np

Dev Test‡

EM F1 EM F1

(a) BERTQA BERT-base – 39.73 56.29 – –
(b) BERTQA (our version) BERT-base – 42.2 58.13 35.83 52.62
(c) 2nd best on the leaderboard – – – – 63.53 75.94

(d) Ours Multi-Passage (Lnext) BERT-base 20 60.42 71.19 51.21 64.73
(e) + Lhist, Lda BERT-base 20 62.97 72.79 – –
(f) + Lhist, Lda, Ladv BERT-base 10† 65.31 74.62 – –

(g) + Lhist, Lda BERT-large 10 66.79 74.98 – –
(h) + Lhist, Lda, Ladv BERT-large 6† 68.18 77.11 61.75 73.09
(i) + Lhist, Lda, Ladv RoBERTa-large 6† 69.91 78.06 – –
(j) + Lhist, Lda, Ladv ELECTRA-large 6† 68.58 77.38 – –

(k) Ours (ensemble) 12 large models – 72.43 80.00 67.09 76.34

Table 1: Quantitative results on dev and test sets. np is the number of passages during training. All models are fed
with 20 passages during inference. †Due to the limit of GPU memory, for some configurations we used smaller
np for training. ‡Due to the submission quota limit, we don’t have test set scores for some ablations.

3.4 Results

Table 1 summarizes our quantitative results on both
dev and test sets. Processing the full document
in a multi-passage fashion and predicting answer
strings at the span-level instead of the token-level
leads to significant improvement when compared
with the original BERTQA baseline. By doing
so, we achieved 30.16% and 18.35% increase in
EM and F1 ((d) v.s. (b)). Adding all of our other
objectives leads to a further boost in performance.

Our final model on the shared task leaderboard5

is the ensemble of 12 models, which contains a
mixture of the 3 different large pre-trained models
(BERT, RoBERTa and ELECTRA), with or with-
out posterior regularization, and with or without
additional pre-training on Squad 2.0 (Rajpurkar
et al., 2018). Although we do not observe a perfor-
mance boost for each single model from additional
pre-training on Squad 2.0, doing so adds model
diversity for ensemble. Both EM and F1 scores of
our ensemble model on test set are higher than the
2nd best model on the leaderboard ((k) v.s. (c)).

4 Conclusion

We have introduced a model for selecting ground-
ing knowledge in information-seeking dialogues.
We model both the structure and relations of
the grounding document and dialogue contexts
through a multi-passage knowledge reader, a multi-
task loss framework, and a posterior regularization
mechanism. Together with using a strong trans-
former backbone, these strategies led to state-of-

5https://eval.ai/web/challenges/
challenge-page/793/leaderboard/2172

the-art results on the first DialDoc shared task.
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